Introduction to Diffusion-weighted Imaging

Joelle Sarlls, Ph.D.

NIH MRI Research Facility
National Institute of Neurological Disorder and Stroke
National Institutes of Health

Motivation

- Magnetic resonance imaging provides information about the spatial distribution of water.
- Diffusion-weighted MRI (DWI) provides information about the motion of water.
- DWIs are sensitive to cellular architecture and tissue integrity.
- DWI can provide quantitative measures that are directly comparable.
- Diffusion imaging can be used to identify specific white matter tracts
- ~570 publications combining fMRI and DWI

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

 Diffusion refers to the random translational (Brownian) motion of molecules that results from the thermal energy of theses molecules

$$D = \frac{kT}{6\pi\eta R_H} \quad \text{(for sphere)}$$

Stokes-Einstein

Gaussian Distribution

 Large number of particles that are free to diffuse have a squared displacement of a Gaussian form

Diffusion

$$\langle r^2 \rangle \approx 6DT_{dif}$$

$$D \approx 3.0 \times 10^{-3} \ mm^2/s$$

$$T_{dif} \approx 30 \ ms$$

$$r \approx 25 \ \mu m$$

 If the motion of water is hindered by cell membranes, macromolecules, etc. the displacement will be less and D will appear lower.

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Image Intensity in MRI

Physical property of tissue water

- ρ	proton density	Concentration of water
T1T2T2*	relaxation time relaxation time relaxation time	Rotational motion, Magnetic field strength
– D	diffusion coefficient	Translational motion

• Experimentally controlled parameters

Sequence	Spin-echo/gradient echo
- TR	Time of Repetition
- TE	Time to echo
b-value	diffusion-weighting factor

Gradients make the resonance frequency a function of spatial position

$$\omega = \gamma B = \gamma B_0 + \gamma z G_z$$

Basic Diffusion-weighting

Phase Twist

Basic Diffusion-weighting

Short Break for a Video

Spin-echo Diffusion Preparation

$$b = (\gamma G \delta)^2 \left(\Delta - \frac{\delta}{3} \right)$$

Stejskal, EO and Tanner, JE. J Chem Phys (1965) 42: 288-292

DWI

Non-diffusion-weighted signal intensity

B-value sec/mm²

Diffusion
Coefficient
mm²/sec

Typical DWI

 Single-shot "spin-echo" Echo Planar Imaging

Parameter	Value	Comment
TE	50-100ms	Limited by b-value
TR	>5s	Fully relaxed
Matrix	96 x 96	2.5 x 2.5 mm
Slice Thickness	2.5 mm	Equal dimensions
B-value	~1000 s/mm²	For brain*

*Jones D., et al. Mag Res Med (1999) 42 : 515

Calculate Diffusion Parameters

Diffusion map

$$b = 0 \text{ s/mm}^2$$

$$I_0$$

 $b = 1100 \text{ s/mm}^2$ Gz

$$I_z = I_0 e^{-bD_z}$$

Dz

$$D_z = \frac{1}{-b} \ln \left(\frac{I_z}{I_0} \right)$$

Water Diffusion in Tissue

Not Free

Cell membranes
Organelles
Extracellular matrix

Acute Stroke

Warach S., et al. Ann Neurol (1995) 37:231-241

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Water Diffusion in Tissue

Not Free

Cell membranes
Organelles
Extracellular matrix

Anisotropic Diffusion

The Diffusion Tensor

$$\underline{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

Basser, P, et. al. J Magn Reson B (1994) 3: 247-254

DTI

 $b = 1100 \text{ s/mm}^2$

Calculate Diffusion Tensor

Diagonalize DT

$$\underline{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Eigenvalues

Eigenvectors

Quantitative Parameters

$$\underline{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Average Diffusivity

$$< D> = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

Fractional Anisotropy

$$FA = \frac{\sqrt{3(\lambda_1 - \langle \lambda \rangle)^2 + (\lambda_2 - \langle \lambda \rangle)^2 + (\lambda_3 - \langle \lambda \rangle)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

 $0 \le FA \le 1$

Directional Encoding for DTI

Pajevic S. and Pierpaoli C., Magn Reson Med (1999) 43: 526-540

<D>

Directional Encoded Color Map

Applications of DTI

- Cerebral Ischemia (Stroke)
- Brain Cancer and Effects of Radiotherapy
- Multiple Sclerosis
- Epilepsy
- Metabolic Disorders
- Normal Brain Maturation and Aging

- Traumatic Brain Injury
- Alzheimer's Disease
- Amyotrophic Lateral Sclerosis
- Niemann-Pick type C Disease
- Dementias
- Connectivity

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

Typical DW SSEPI

PRO

Insensitive to Bulk motion

Time Efficient

CON

Low Resolution

Distortions - Field inhomogeneities

Distortions - Diffusion weighting

CON: Distortions from field inhomogeneities

T2-weighted FSE

Non-diffusion-weighted SSEPI

SSEPI corrected

CON: Distortions from DW

DW SSEPI volumes

FA maps

Other Artifacts

Large Motion

Cardiac Pulsation

Fat (Shifted Image)

Outline

- What is diffusion?
- How do we measure diffusion in MRI?
- How do we extract directional information?
- What are the practical problems and limitations?
- Beyond the diffusion tensor

What isTractography?

The use of orientation information from diffusion imaging to reconstruct estimates of white matter pathways in the brain.

Limitation to DTI comes from partial volume effects

Typical resolution for SSEPI DTI 2.5 x 2.5 x 2.5 mm

Cortical projection systems of left cerebral hemisphere

Partial Volume Effect

Beyond Standard DTI

- High Angular Resolution Diffusion Imaging (HARDI)
 - Multi-tensor models
 - Non-parametric algorithums
 - DSI, Qball, SD, PAS

Non-parametric Algorithms

 $b = 0 \text{ s/mm}^2$

ACKNOWLEDGEMENTS

Peter Bandettini, PhD
Carlo Pierpaoli, MD,PhD
Ted Trouard, PhD
Lindsay Walker, MS
Kathy Warren, MD
Emilie Steffen
Dan Handwerker, PhD

THANK YOU